Tuesday, January 12, 2010

SETS & ITS OPERATIONS

Basic operations

There are several fundamental operations for constructing new sets from given sets.

Unions

The union of A and B, denoted AB

Two sets can be "added" together. The union of A and B, denoted by AB, is the set of all things which are members of either A or B.


Examples:

  • {1, 2} ∪ {red, white} = {1, 2, red, white}.
  • {1, 2, green} ∪ {red, white, green} = {1, 2, red, white, green}.
  • {1, 2} ∪ {1, 2} = {1, 2}.

Some basic properties of unions:

  • AB = BA.
  • A ∪ (BC) = (AB) ∪ C.
  • A ⊆ (AB).
  • AA = A.
  • A ∪ ∅ = A.
  • AB if and only if AB = B.

Intersections

A new set can also be constructed by determining which members two sets have "in common". The intersection of A and B, denoted by AB, is the set of all things which are members of both A and B. If AB = ∅, then A and B are said to be disjoint.

The intersection of A and B, denoted AB.

Examples:

  • {1, 2} ∩ {red, white} = ∅.
  • {1, 2, green} ∩ {red, white, green} = {green}.
  • {1, 2} ∩ {1, 2} = {1, 2}.

Some basic properties of intersections:

  • AB = BA.
  • A ∩ (BC) = (AB) ∩ C.
  • ABA.
  • AA = A.
  • A ∩ ∅ = ∅.
  • AB if and only if AB = A.

Complements

The relative complement
of A in B
The complement of A in U
The symmetric difference of A and B

Two sets can also be "subtracted". The relative complement of B in A (also called the set-theoretic difference of A and B), denoted by A \ B, (or AB) is the set of all elements which are members of A but not members of B. Note that it is valid to "subtract" members of a set that are not in the set, such as removing the element green from the set {1, 2, 3}; doing so has no effect.

In certain settings all sets under discussion are considered to be subsets of a given universal set U. In such cases, U \ A is called the absolute complement or simply complement of A, and is denoted by A′.

Examples:

  • {1, 2} \ {red, white} = {1, 2}.
  • {1, 2, green} \ {red, white, green} = {1, 2}.
  • {1, 2} \ {1, 2} = ∅.
  • {1, 2, 3, 4} \ {1, 3} = {2, 4}.
  • If U is the set of integers, E is the set of even integers, and O is the set of odd integers, then E′ = O.

Some basic properties of complements:

  • A \ BB \ A.
  • AA′ = U.
  • AA′ = ∅.
  • (A′)′ = A.
  • A \ A = ∅.
  • U′ = ∅ and ∅′ = U.
  • A \ B = AB.

An extension of the complement is the symmetric difference, defined for sets A, B as

A\,\Delta\,B = (A \setminus B) \cup (B \setminus A).

For example, the symmetric difference of {7,8,9,10} and {9,10,11,12} is the set {7,8,11,12}.

Cartesian product

A new set can be constructed by associating every element of one set with every element of another set. The Cartesian product of two sets A and B, denoted by A × B is the set of all ordered pairs (a, b) such that a is a member of A and b is a member of B.

Examples:

  • {1, 2} × {red, white} = {(1, red), (1, white), (2, red), (2, white)}.
  • {1, 2, green} × {red, white, green} = {(1, red), (1, white), (1, green), (2, red), (2, white), (2, green), (green, red), (green, white), (green, green)}.
  • {1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Some basic properties of cartesian products:

  • A × ∅ = ∅.
  • A × (BC) = (A × B) ∪ (A × C).
  • (AB) × C = (A × C) ∪ (B × C).

Let A and B be finite sets. Then

  • | A × B | = | B × A | = | A | × | B |.